LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?

Author:

Blocken Bert

Abstract

Abstract Large Eddy Simulation (LES) undeniably has the potential to provide more accurate and more reliable results than simulations based on the Reynolds-averaged Navier-Stokes (RANS) approach. However, LES entails a higher simulation complexity and a much higher computational cost. In spite of some claims made in the past decades that LES would render RANS obsolete, RANS remains widely used in both research and engineering practice. This paper attempts to answer the questions why this is the case and whether this is justified, from the viewpoint of building simulation, both for outdoor and indoor applications. First, the governing equations and a brief overview of the history of LES and RANS are presented. Next, relevant highlights from some previous position papers on LES versus RANS are provided. Given their importance, the availability or unavailability of best practice guidelines is outlined. Subsequently, why RANS is still frequently used and whether this is justified or not is illustrated by examples for five application areas in building simulation: pedestrian-level wind comfort, near-field pollutant dispersion, urban thermal environment, natural ventilation of buildings and indoor airflow. It is shown that the answers vary depending on the application area but also depending on other—less obvious—parameters such as the building configuration under study. Finally, a discussion and conclusions including perspectives on the future of LES and RANS in building simulation are provided.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Building and Construction

Reference363 articles.

1. Abdalla IE, Cook MJ, Rees SJ, Yang Z (2007). Large-eddy simulation of buoyancy-driven natural ventilation in an enclosure with a point heat source. International Journal of Computational Fluid Dynamics, 21: 231–245.

2. Adamek K, Vasan N, Elshaer A, English E, Bitsuamlak G (2017). Pedestrian level wind assessment through city development: A study of the financial district in Toronto. Sustainable Cities and Society, 35: 178–190.

3. AIAA (1998). Guide for the verification and validation of computational fluid dynamics simulations. AIAA-G-077-1998. Reston, VA. USA: American Institute of Aeronautics and Astronautics.

4. Alamdari F, Hammond GP, Melo C (1984). ‘Appropriate’ calculation methods for convective heat transfer from building surfaces. In: Proceedings of the 1st National Conference on Heat Transfer, Leed, UK. Published in 1ChemE Syrup. series no. 86(2): 1201–1211.

5. Allegrini J, Kubilay A (2017). Wind sheltering effect of a small railway station shelter and its impact on wind comfort for passengers. Journal of Wind Engineering and Industrial Aerodynamics, 164: 82–95.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3