Additive manufacturing with the lightweight material aluminium alloy EN AW-7075

Author:

Langebeck AnikaORCID,Bohlen Annika,Freisse Hannes,Vollertsen Frank

Abstract

AbstractAs a widely used additive manufacturing technique, the laser metal deposition process (LMD) also known as direct energy deposition (DED) is often used to manufacture large-scale parts. Advantages of the LMD process are the high build-up rate as well as its nearly limitless build-up volume. To manufacture large-scale parts in lightweight design with high strength aluminium alloy EN AW-7075, the LMD process has a disadvantage that must be considered. During the process, the aluminium alloy is melted and has therefore a high solubility for hydrogen. As soon as the melt pool solidifies again, the hydrogen cannot escape the melt and hydrogen pores are formed which weakens the mechanical properties of the manufactured part. To counter this disadvantage, the hydrogen must be successfully kept away from the process zone. Therefore, the covering of the process zone with shielding gas can be improved by an additional shielding gas shroud. Furthermore, the process parameters energy input per unit length as well as the horizontal overlapping between two single tracks can be varied to minimize the pore volume. Best results can be achieved in single tracks with an elevated energy input per unit length from 3000 to 6000 J/cm. To manufacture layers, a minimal horizontal overlapping will lead to lowest pore volume, although this results in a very wavy surface, as a compromise of low pore volume and a nearly even surface a horizontal overlapping of 30 to 37% leads to a pore volume of 0.95% ± 0.50%.

Funder

BMWi

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3