Multi-material design in additive manufacturing—feasibility validation

Author:

Leicher M.,Kamper S.,Treutler K.,Wesling V.

Abstract

AbstractThe present investigations on generative manufacturing using metallic materials pursue the idea of transferring the microscopic structural morphology of a dual-phase steel in modified form to the macroscopic level. The aim is to be able to join materials of different lattice modifications and to combine their positive properties. This applies in particular to the combination of high tensile strength and good formability. For this investigation, a specimen was created from a high-strength ferritic/martensitic (25%) and an austenitic (75%) material with a defined welding sequence. The specimen was deliberately manufactured anisotropically using welding layers in order to quantify its properties. Tensile tests were performed on specimens with different weld seam orientations to determine the direction-dependent properties. As can be proven by the results, the application of welding processes with different materials results in an anisotropic behaviour in generative manufacturing. With regard to tensile strength and elongation, there is an integral value of the mechanical-technological properties of both base materials. The existing anisotropy can be utilized with regard to the design by adapting the alignment of the weld layers to the load.

Funder

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3