Closed-form time derivatives of the equations of motion of rigid body systems

Author:

Müller AndreasORCID,Kumar Shivesh

Abstract

AbstractDerivatives of equations of motion (EOM) describing the dynamics of rigid body systems are becoming increasingly relevant for the robotics community and find many applications in design and control of robotic systems. Controlling robots, and multibody systems comprising elastic components in particular, not only requires smooth trajectories but also the time derivatives of the control forces/torques, hence of the EOM. This paper presents the time derivatives of the EOM in closed form up to second-order as an alternative formulation to the existing recursive algorithms for this purpose, which provides a direct insight into the structure of the derivatives. The Lie group formulation for rigid body systems is used giving rise to very compact and easily parameterized equations.

Funder

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Reference32 articles.

1. Buondonno, G., De Luca, A.: A recursive Newton-Euler algorithm for robots with elastic joints and its application to control. In: 2015 IEEE/RSJ IROS, pp. 5526–5532 (2015)

2. Buondonno, G., De Luca, A.: Efficient computation of inverse dynamics and feedback linearization for VSA-based robots. IEEE Robot. Autom. Lett. 1(2), 908–915 (2016)

3. Carpentier, J., Mansard, N.: Analytical derivatives of rigid body dynamics algorithms. In: Robotics: Science and Systems (2018)

4. De Jong, J.J., Wu, Y.Q., Carricato, M., Herder, J.L.: A pure-inertia method for dynamic balancing of symmetric planar mechanisms. In: Advances in Robot Kinematics, vol. 5, pp. 1–8 (2018)

5. de Jong, J.J., Müller, A., Herder, J.L.: Higher-order derivatives of rigid body dynamics with application to the dynamic balance of spatial linkages. Mech. Mach. Theory 155, 104059 (2021)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3