A Lie group variational integration approach to the full discretization of a constrained geometrically exact Cosserat beam model

Author:

Hante StefanORCID,Tumiotto Denise,Arnold Martin

Abstract

AbstractIn this paper, we will consider a geometrically exact Cosserat beam model taking into account the industrial challenges. The beam is represented by a framed curve, which we parametrize in the configuration space $\mathbb{S}^{3}\ltimes \mathbb{R}^{3}$ S 3 R 3 with semi-direct product Lie group structure, where $\mathbb{S}^{3}$ S 3 is the set of unit quaternions. Velocities and angular velocities with respect to the body-fixed frame are given as the velocity vector of the configuration. We introduce internal constraints, where the rigid cross sections have to remain perpendicular to the center line to reduce the full Cosserat beam model to a Kirchhoff beam model. We derive the equations of motion by Hamilton’s principle with an augmented Lagrangian. In order to fully discretize the beam model in space and time, we only consider piecewise interpolated configurations in the variational principle. This leads, after approximating the action integral with second order, to the discrete equations of motion. Here, it is notable that we allow the Lagrange multipliers to be discontinuous in time in order to respect the derivatives of the constraint equations, also known as hidden constraints. In the last part, we will test our numerical scheme on two benchmark problems that show that there is no shear locking observable in the discretized beam model and that the errors are observed to decrease with second order with the spatial step size and the time step size.

Funder

Horizon 2020

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Reference38 articles.

1. Andersen, H.C.: Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52(1), 24–34 (1983)

2. Arnold, M., Hante, S.: Implementation details of a generalized-$\alpha $ DAE Lie group method. ASME J. Comput. Nonlinear Dyn. 12(2), 021,002 (2016)

3. Arnold, M., Linn, J., Brüls, O.: THREAD – numerical modelling of highly flexible structures for industrial applications. In: Celledoni, E., Münch, A. (eds.) Mathematics with Industry: Driving Innovation: Annual Report 2019, ECMI, pp. 20–25 (2019), Chap. 4

4. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5, 031,002 (2010). https://doi.org/10.1115/1.4001370

5. Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington, USA (2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3