Affiliation:
1. Institute of Mathematics, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany e-mail:
Abstract
Configuration spaces with Lie group structure display kinematical nonlinearities of mechanical systems. In Lie group time integration, this nonlinear structure is also considered at the time-discrete level using nonlinear updates of the configuration variables. For practical implementation purposes, these update formulae have to be adapted to each specific Lie group setting that may be characterized from the algorithmic viewpoint by group operation, exponential map, tilde, and tangent operator. In this paper, we discuss these practical aspects for the time integration of a geometrically exact Cosserat rod model with rotational degrees-of-freedom being represented by unit quaternions. Shearing and longitudinal extension of the Cosserat rod may be neglected using suitable constraints that result in a differential-algebraic equation (DAE) formulation of the beam structure. The specific structure of unconstrained systems and constrained systems is exploited by tailored algorithms for the corrector iteration of the generalized-α Lie group integrator.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献