Abstract
AbstractThe distortion/interaction or activation strain model, developed by Houk and Bickelhaupt, relates chemical reactivity to the reagents deformations and reciprocal electronic influences. However, in its original formulation, it struggles to elucidate the mechanistic insights of intramolecular reactions, those unimolecular processes in which two parts of a molecule, the reaction centers, linked by a connector, are brought together to yield a different chemical species. Here we present a modification of the distortion/interaction procedure for its application on intramolecular reactions. This new procedure allows the calculation of the influence exerted by the connector over the reaction pathway in an indirect way, from the distortions of the two reaction centers and their interaction energy. This procedure does not include additional, undesired interactions and offers the possibility of calculating very large connectors in a computationally inexpensive way. We applied this methodology in the normal electron-demand Diels–Alder reaction of 1,3,8-nonatriene derivatives, with different functionalizations and connector lengths. In-depth analysis of the IRC showed that the reaction pathway can be subdivided in three main regions, what we called the oncoming, conversion and relaxation phases, each of them characterized by different evolutions of the distortion and interaction energies, and with clear geometry changes. We suggest that this new formulation can provide additional information for intramolecular reactions, especially to those processes for which the connector is said to play a crucial role in the observed reaction rates.
Funder
Ministerio de Ciencia, Innovación y Universidades
Linköping University
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献