Author:
Ada Anil,Fawzi Omar,Hatami Hamed
Publisher
Springer Berlin Heidelberg
Reference22 articles.
1. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. arXiv:1205.5282 (2012)
2. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)
3. Bruck, J., Smolensky, R.: Polynomial threshold functions, ac0 functions, and spectral norms. SIAM J. Comput. 21(1), 33–42 (1992)
4. de Wolf, R.: A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions. Quantum Inf. Comput. 8(10), 943–950 (2008)
5. Goldmann, M., Håstad, J., Razborov, A.A.: Majority gates vs. general weighted threshold gates. Comput. Complex., 277–300 (1992)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Approximate Degree, Weight, and Indistinguishability;ACM Transactions on Computation Theory;2022-03-04
2. The Log-Approximate-Rank Conjecture Is False;Journal of the ACM;2020-08-31
3. The log-approximate-rank conjecture is false;Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing;2019-06-23
4. Near Log-Convexity of Measured Heat in (Discrete) Time and Consequences;2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS);2018-10
5. Boolean functions with small spectral norm, revisited;Mathematical Proceedings of the Cambridge Philosophical Society;2018-05-16