A Novel Machine Learning Approach for Detecting the Brain Abnormalities from MRI Structural Images
Author:
Publisher
Springer Berlin Heidelberg
Link
http://link.springer.com/content/pdf/10.1007/978-3-642-34123-6_9.pdf
Reference18 articles.
1. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligencein Medicine 21, 43–63 (2001)
2. Chaplot, S., Patnaik, L.M., Jagannathan, N.R.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neuralnetwork. Biomedical Signal Processing and Control 1, 86–92 (2006)
3. Gorunescu, F.: Data Mining Techniques in Computer-Aided Diagnosis: Non-InvasiveCancer Detection. PWASET 25, 427–430 (2007) ISSN 1307-6884
4. Kara, S., Dirgenali, F.: A system to diagnose atherosclerosis via wavelet transforms,principal component analysis and artificial neural networks. Expert Systems with Applications 32, 632–640 (2007)
5. Maitra, M., Chatterjee, A.: Hybrid multi-resolutionSlantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation. Med. Eng. Phys. (2007), doi:10.1016/j.medengphy.2007.06.009
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multinomial classification of CT-MRI image retrieval by optimizing EffResNet-4 architecture in deep neural models;International Journal of System Assurance Engineering and Management;2024-06-22
2. Impact of Data-Augmentation on Brain Tumor Detection Using Different YOLO Versions Models;The International Arab Journal of Information Technology;2024
3. BlockDeepNet: A Proposed Framework for the Detection of CT-MRI Imaging Using Blockchain and Deep Learning Architecture;Lecture Notes in Networks and Systems;2024
4. TumorDetNet: A unified deep learning model for brain tumor detection and classification;PLOS ONE;2023-09-27
5. Recognition of Brain Tumors using Convolutional Neural Networks;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3