Using Data-Driven Discovery of Better Student Models to Improve Student Learning

Author:

Koedinger Kenneth R.,Stamper John C.,McLaughlin Elizabeth A.,Nixon Tristan

Publisher

Springer Berlin Heidelberg

Reference13 articles.

1. Barnes, T.: The Q-matrix Method: Mining Student Response Data for Knowledge. In: Beck, J. (ed.) Proceedings of AAAI 2005: Educational Data Mining Workshop (2005)

2. Beheshti, B., Desmarais, M., Naceur, R.: Methods to find the number of latent skills. In: Yacef, K., Zaïane, O., Hershkovitz, H., Yudelson, M., Stamper, J. (eds.) Proceedings of the 5th International Conference on Educational Data Mining, Chania, Greece, pp. 81–86 (2012)

3. Clark, R.E., Feldon, D., van Merriënboer, J., Yates, K., Early, S.: Cognitive task analysis. In: Spector, J., Merrill, M., van Merriënboer, J., Driscoll, M. (eds.) Handbook of Research on Educational Communications and Technology, Mahwah, NJ, pp. 577–593 (2007)

4. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 253–278 (1995)

5. Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A Data Repository for the EDM commuity: The PSLC DataShop. In: Romero, Ventura, Pechenizkiy, Baker (eds.) Handbook of Educational Data Mining. CRC Press (2010), http://learnlab.org/datashop

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opportunities and challenges for using artificial intelligence in academic continuity: Case of Georgia;Journal of Eastern European and Central Asian Research (JEECAR);2024-08-03

2. Revolutionizing Education Through Personalized Pedagogy and Machine Learning Algorithms;Advances in Educational Technologies and Instructional Design;2024-03-22

3. Adaptive Learning is Hard: Challenges, Nuances, and Trade-offs in Modeling;International Journal of Artificial Intelligence in Education;2024-03-21

4. AI Adaptivity in a Mixed-Reality System Improves Learning;International Journal of Artificial Intelligence in Education;2024-01-10

5. Involving Teachers in the Data-Driven Improvement of Intelligent Tutors: A Prototyping Study;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3