Author:
Granados Miguel,Kim Kwang In,Tompkin James,Kautz Jan,Theobalt Christian
Publisher
Springer Berlin Heidelberg
Reference30 articles.
1. Bhat, P., Zitnick, C.L., Snavely, N., Agarwala, A., Agrawala, M., Cohen, M.F., Curless, B., Kang, S.B.: Using photographs to enhance videos of a static scene. In: Rendering Techniques, pp. 327–338 (2007)
2. Shum, H., Kang, S.B.: Review of image-based rendering techniques. In: VCIP, pp. 2–13 (2000)
3. Debevec, P.E., Yu, Y., Borshukov, G.: Efficient view-dependent image-based rendering with projective texture-mapping. In: Rendering Techniques, pp. 105–116 (1998)
4. Torr, P.H.S., Fitzgibbon, A.W., Zisserman, A.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. IJCV 32, 27–44 (1999)
5. Lecture Notes in Computer Science;M. Pollefeys,2002
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-07
2. FVIFormer: Flow-Guided Global-Local Aggregation Transformer Network for Video Inpainting;IEEE Journal on Emerging and Selected Topics in Circuits and Systems;2024-06
3. Deep Learning-Based Image and Video Inpainting: A Survey;International Journal of Computer Vision;2024-01-19
4. CIRI: Curricular Inactivation for Residue-aware One-shot Video Inpainting;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01
5. Construction of a Video Inpainting Dataset Based on a Subjective Study;2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP);2023-09-27