Author:
Adiga Abhijin,Vullikanti Anil Kumar S.
Publisher
Springer Berlin Heidelberg
Reference27 articles.
1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sampling. J. ACM 56(4), 21:1–21:28 (2009)
2. Adiga, A., Vullikanti, A.: How robust is the core of a network?
http://ndssl.vbi.vt.edu/supplementary-info/vskumar/kcore.pdf
3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. NHM 3(2), 371–393 (2008)
4. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 65–74. ACM (2011)
5. Borgatti, S., Carley, K., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Social Networks 28, 124–136 (2006)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Targeted k-node collapse problem: Towards understanding the robustness of local k-core structure;Physica A: Statistical Mechanics and its Applications;2024-05
2. Exploring Cohesive Subgraphs in Hypergraphs: The (k,g)-core Approach;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21
3. Skeletal Cores and Graph Resilience;Machine Learning and Knowledge Discovery in Databases: Research Track;2023
4. Quantifying Node-Based Core Resilience;Machine Learning and Knowledge Discovery in Databases: Research Track;2023
5. Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes;Applied Network Science;2021-11-02