On the bias of traceroute sampling

Author:

Achlioptas Dimitris1,Clauset Aaron2,Kempe David3,Moore Cristopher2

Affiliation:

1. University of California, Santa Cruz, CA

2. University of New Mexico, Albuquerque, and the Santa Fe Institute, New Mexico

3. University of Southern California, Los Angeles, CA

Abstract

Understanding the graph structure of the Internet is a crucial step for building accurate network models and designing efficient algorithms for Internet applications. Yet, obtaining this graph structure can be a surprisingly difficult task, as edges cannot be explicitly queried. For instance, empirical studies of the network of Internet Protocol (IP) addresses typically rely on indirect methods like traceroute to build what are approximately single-source, all-destinations, shortest-path trees. These trees only sample a fraction of the network's edges, and a paper by Lakhina et al. [2003] found empirically that the resulting sample is intrinsically biased. Further, in simulations, they observed that the degree distribution under traceroute sampling exhibits a power law even when the underlying degree distribution is Poisson. In this article, we study the bias of traceroute sampling mathematically and, for a very general class of underlying degree distributions, explicitly calculate the distribution that will be observed. As example applications of our machinery, we prove that traceroute sampling finds power-law degree distributions in both δ-regular and Poisson-distributed random graphs. Thus, our work puts the observations of Lakhina et al. on a rigorous footing, and extends them to nearly arbitrary degree distributions.

Funder

National Science Foundation

Division of Computing and Communication Foundations

European Research Council

Division of Physics

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QClique: Optimizing Performance and Accuracy in Maximum Weighted Clique;Lecture Notes in Computer Science;2024

2. Partitioning Communication Streams Into Graph Snapshots;IEEE Transactions on Network Science and Engineering;2023-03-01

3. A simple algorithm for graph reconstruction;Random Structures & Algorithms;2023-02-16

4. Distributed Data-Driven Control of Network Systems;IEEE Open Journal of Control Systems;2023

5. Web Mining;Machine Learning for Data Science Handbook;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3