Trichomes affect grapevine leaf optical properties and thermoregulation

Author:

Domanda CorradoORCID,Nuzzo VitaleORCID,Montanaro GiuseppeORCID,Failla OsvaldoORCID,Rustioni LauraORCID

Abstract

AbstractIn the context of climate change, the optical properties of grapevine leaves have been used in imaging technologies to screen grapevine phenotypes tolerant to water deficit and heat waves in field conditions. Image-based plant phenotyping is challenging because the adaxial and the abaxial sides of the leaf present different morphology. This study investigated the effect of trichomes of the abaxial epidermis on the spectral responses in the two grapevine leaf sides. It was also examined the effect of pubescence on leaf thermoregulation, either during water deficiency or not. For this study, 99 Vitis spp. genotypes were categorised for their prostrate trichome density between main veins on the abaxial side of the leaves (using the descriptor OIV 084). In the first week of 2022, August, reflectance spectra from 400 to 700 nm and color indexes CIELAB and RGB were recorded in five leaves (both abaxial and adaxial sides) per genotype. During three days in midsummer, crop water stress index (CWSI) was also determined in each genotype. The abaxial leaf side was more reflective than the adaxial one in all visible color bands. Values of CIELAB (except for component a*) and RGB were higher for the abaxial leaf side than the adaxial one. The different spectral and color responses between leaf sides positively correlated with the descriptor OIV 084. Trichomes, which mainly occur on the abaxial side in grapevine, significantly contribute to the different optical properties between the two leaf sides. Correlation between OIV 084 and CWSI values was significantly positive (p < 0.05) only when vines were under drought, indicating that trichomes rise leaf temperature by probably reducing evaporative cooling under dry conditions. Therefore, pubescence could be a promising trait to consider when selecting varieties for drought tolerance.

Funder

Regione Puglia

Università del Salento

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3