Abstract
AbstractIn the present study, the mechanical characteristics and environmental aspects of lignite pervious concrete (LPC) in reducing stormwater pollution were investigated. Therefore, fine-grained lignite (0.6–1.2 mm) in various portions (up to 15% w/w of coarse aggregate) was added to the PC mixture. The workability, strength, cementitious paste thickness, and physical properties of LPC were examined for further application in urban areas with a focus on stormwater treatment. The statistical analysis of the results of ANOVA and visualization of the microstructure of LPC by means of scanning electron microscopy and energy-dispersive X-ray spectroscopy were also presented. The results showed that LPC is a sticky paste with no slump (0). Adding lignite also slightly reduced the compressive strength of LPC up to 23% lower than the control sample (13.8 MPa). In addition, the presence of lignite led to a considerable reduction in permeability (40%) and porosity (51%) compared to the control sample. It was also found that the increase in cementitious paste thickness resulted in an increase of the compressive strength, which was mainly concentrated between 0.3 and 1.8 mm. However, the performance of LPC in reducing stormwater contamination was promising. Sample L15, with the highest removal efficiency, reduced the chemical oxygen demand, total suspended solids, and turbidity up to 42.14%, 63.38%, and 67.24%, respectively, while no significant changes were observed in pH, total dissolved solids, and nitrate (NO3). In short, although adding lignite to PC caused a reduction in the strength and physical properties of LPC, its efficiency in reducing stormwater pollution is quite promising, and it is recommended for use in green spaces of urban areas.
Graphical Abstract
Funder
Sharq Cement Product Company
Curtin University
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献