Permeable Concrete Barriers to Control Water Pollution: A Review

Author:

Abdel Rahman Rehab O.1ORCID,El-Kamash Ahmed M.1,Hung Yung-Tse2ORCID

Affiliation:

1. Hot Laboratory Center, Atomic Energy Authority of Egypt, Cairo P.O. Box 13759, Egypt

2. Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH 44115, USA

Abstract

Permeable concrete is a class of materials that has long been tested and implemented to control water pollution. Its application in low-impact development practices has proved its efficiency in mitigating some of the impacts of urbanization on the environment, including urban heat islands, attenuation of flashfloods, and reduction of transportation-related noise. Additionally, several research efforts have been directed at the dissemination of these materials for controlling pollution via their use as permeable reactive barriers, as well as their use in the treatment of waste water and water purification. This work is focused on the potential use of these materials as permeable reactive barriers to remediate ground water and treat acid mine drainage. In this respect, advances in material selection and their proportions in the mix design of conventional and innovative permeable concrete are presented. An overview of the available characterization techniques to evaluate the rheology of the paste, hydraulic, mechanical, durability, and pollutant removal performances of the hardened material are presented and their features are summarized. An overview of permeable reactive barrier technology is provided, recent research on the application of permeable concrete technology is analyzed, and gaps and recommendations for future research directions in this field are identified. The optimization of the mix design of permeable reactive concrete barriers is recommended to be directed in a way that balances the performance measures and the durability of the barrier over its service life. As these materials are proposed to control water pollution, there is a need to ensure that this practice has minimal environmental impacts on the affected environment. This can be achieved by considering the analysis of the alkaline plume attenuation in the downstream environment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference183 articles.

1. LiberTexts (2022, July 26). Functions of Water. Available online: https://med.libretexts.org/Courses/Metropolitan_State_University_of_Denver/Introduction_to_Nutrition_(Diker)/07%3A_Nutrients_Important_to_Fluid_and_Electrolyte_Balance/7.02%3A_Waters_Importance_to_Vitality.

2. Abdel Rahman, R.O., El-Kamash, A.M., and Hung, Y.-T. (2022). Applications of Nano-Zeolite in Wastewater Treatment: An Overview. Water, 14.

3. Hydration, setting and hardening of Portland cement;Beaudoin;Lea’s Chemistry of Cement and Concrete,2019

4. Hewlett, P.C. (2006). Lea’s Chemistry of Cement and Concrete, Elsevier Science.

5. Rahman, R.O.A., and Ojovan, M.I. (2021). Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies, Woodhead Publishing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3