An Efficient Android Malware Detection Using Adaptive Red Fox Optimization Based CNN
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Link
https://link.springer.com/content/pdf/10.1007/s11277-022-09765-0.pdf
Reference37 articles.
1. Syrris, V., & Geneiatakis, D. (2021). On machine learning effectiveness for malware detection in android OS using static analysis data. Journal of Information Security and Applications, 59, 102794.
2. Cai, L., Li, Y., & Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086.
3. Ren, Z., Haomin, Wu., Ning, Q., Hussain, I., & Chen, B. (2020). End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Networks, 101, 102098.
4. Bhatia, T., & Kaushal R. (2017). Malware detection in android based on dynamic analysis. In 2017 International conference on cyber security and protection of digital services (Cyber security) (pp. 1–6). IEEE.
5. Zhou, Q., Feng, F., Shen, Z., Zhou, R., Hsieh, M.-Y., & Li, K.-C. (2019). A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 78(3), 3529–3552.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PHIGrader: Evaluating the effectiveness of Manifest file components in Android malware detection using Multi Criteria Decision Making techniques;Journal of Network and Computer Applications;2024-12
2. Android malware detection and identification frameworks by leveraging the machine and deep learning techniques: A comprehensive review;Telematics and Informatics Reports;2024-06
3. Bridging the Gap;ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY;2024-04-03
4. A comprehensive review on permissions-based Android malware detection;International Journal of Information Security;2024-03-04
5. User oriented smart connected product and smart environment: a systematic literature review;The International Journal of Advanced Manufacturing Technology;2023-12-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3