Bridging the Gap

Author:

Badawi Soran S.ORCID

Abstract

Effective organization and retrieval of news content are heavily reliant on accurate news classification. While the mountainous research has been conducted in resourceful languages like English and Chinese, the researches on under-resourced languages like the Kurdish language are severely lacking. To address this challenge, we introduce a hybrid approach called RFO-CNN in this paper. The proposed method combines an improved version of red fox optimization algorithm (RFO) and convolutional neural network (CNN) for finetuning CNN’s parameters. Our model’s efficacy was tested on two widely used Kurdish news datasets, KNDH and KDC-4007, both of which contain news articles classified into various categories. We compared the performance of RFO-CNN to other cutting-edge deep learning models such as bidirectional long short-term memory networks and bidirectional encoder representations from transformers (BERT) transformers, as well as classical machine learning approaches such as multinomial naive bayes, support vector machine, and K-nearest neighbors. We trained and tested our datasets using four different scenarios: 60:40, 70:30, 80:20, and 90:10. Our experimental results demonstrate the superiority of the RFO-CNN model across all scenarios, outperforming the benchmark BERT model and other machine learning models in terms of accuracy and F1-score.

Publisher

Koya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3