1. Medara, R., & Singh, R. S. (2022). A review on energy-aware scheduling techniques for workflows in IaaS clouds. Wireless Personal Communications, 1–40.
2. Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., & Tenhunen, H. (2015). Using ant colony system to consolidate VMs for green cloud computing. IEEE Transactions on Services Computing, 8(2), 187–198. https://doi.org/10.1109/TSC.2014.2382555
3. Gartner. (2021). Gartner forecasts worldwide public cloud end-user spending to grow 23% in 2021. https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spendi-ng-to- grow-23-percent-in-2021.
4. Liu, Y., Wei, X., Xiao, J., Liu, Z., Yang, X., & Tian, Y. (2020). Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers. Global Energy Interconnection, 3(3), 272–282.
5. Lavi, H. (2022). Measuring greenhouse gas emissions in data centres: The environmental impact of cloud computing. https://www.climatiq.io/blog/measure-greenhouse-gas-emissionscarbon-data-centres-cloud-computing, Accessed 30 Dec 2022.