Efficient task scheduling on the cloud using artificial neural network and particle swarm optimization

Author:

Nayak Pritam Kumar1ORCID,Singh Ravi Shankar1,Kushwaha Shweta1,Bevara Prasanth Kumar1,Kumar Vinod1,Medara Rambabu2ORCID

Affiliation:

1. Department of Computer Science and Engineering Indian Institute of Technology (BHU) Varanasi India

2. Department of Computer Science and Engineering Gandhi Institute of Technology and Management Visakhapatnam India

Abstract

SummaryA difficult problem in the service‐oriented computing paradigm is improving task scheduler policy or resource provisioning.In order to increase the performance of cloud applications, this article primarily focuses on tasks for resource mapping policy optimization. With the aim of reducing makespan and execution overhead and increasing the average resource utilization, we suggested an efficient independent task scheduler employing supervised neural networks in this paper. The suggested ANN‐based scheduler uses the status of the cloud environment and incoming tasks as inputs to determine the optimal computing resource for a given assignment as a result that assembles our goal. We proposed a novel algorithm in this paper that uses a hybrid methodology based on a swarm intelligence algorithm (PSO) in combination with a machine learning technique (ANN). PSO is used to prepare the train and test dataset for the neural network. Results clearly state that suggested work achieves significant improvement to considered algorithms in makespan (45%–55%), average VM utilization (15%–20%), and execution overhead(20%–30%).

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3