Affiliation:
1. Department of Computer Science and Engineering Indian Institute of Technology (BHU) Varanasi India
2. Department of Computer Science and Engineering Gandhi Institute of Technology and Management Visakhapatnam India
Abstract
SummaryA difficult problem in the service‐oriented computing paradigm is improving task scheduler policy or resource provisioning.In order to increase the performance of cloud applications, this article primarily focuses on tasks for resource mapping policy optimization. With the aim of reducing makespan and execution overhead and increasing the average resource utilization, we suggested an efficient independent task scheduler employing supervised neural networks in this paper. The suggested ANN‐based scheduler uses the status of the cloud environment and incoming tasks as inputs to determine the optimal computing resource for a given assignment as a result that assembles our goal. We proposed a novel algorithm in this paper that uses a hybrid methodology based on a swarm intelligence algorithm (PSO) in combination with a machine learning technique (ANN). PSO is used to prepare the train and test dataset for the neural network. Results clearly state that suggested work achieves significant improvement to considered algorithms in makespan (45%–55%), average VM utilization (15%–20%), and execution overhead(20%–30%).
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献