1. Jiang, Z., He, Z., Chen, S., Molisch, A.F., Zhou, S., & Niu, Z. (2018). Inferring remote channel state information: Cramér-Rae lower bound and deep learning implementation. In IEEE Global Communications Conference (GLOBECOM), (pp. 1–7).
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8648140&tag=1
.
2. 3GPP. (2017). TR 38.900 version 14.2.0 release, study on channel model for frequency spectrum above 6 GHz.
3. 3GPP. (2018). TS 29.520, 5G system; Network data analytics services.
4. Kristem, V., Bas, C. U., Wang, R., & Molisch, A. F. (2018). Outdoor wideband channel measurements and modeling in the 318 GHz band. IEEE Transactions on Wireless Communications, 17(7), 4620–4633.
https://doi.org/10.1109/TWC.2018.2828001
.
5. Mao, Q., Hu, F., & Hao, Q. (2018). Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(4), 2595–2621.
https://doi.org/10.1109/COMST.2018.2846401
.