Identification of the initial reactive sites of micellar and non-micellar casein exposed to microbial transglutaminase

Author:

Duerasch Anja,Konieczny Maja,Henle Thomas

Abstract

AbstractTo investigate the influence of the internal micellar structure on the course of enzymatic cross-linking especially in the initial phase of the reaction, casein micelles isolated from raw milk via ultracentrifugation were incubated with microbial transglutaminase (mTG) in comparison with non-micellar sodium caseinate. Reactive lysine and glutamine residues were identified using a label-free approach, based on the identification of isopeptides within tryptic hydrolysates by targeted HRMS as well as manual monitoring of fragmentation spectra. Identified reactive sites were furthermore weighted by tracking the formation of isopeptides over an incubation time of 15, 30, 45 and 60 min, respectively. Fifteen isopeptides formed in the early stage of mTG cross-linking of caseins were identified and further specified concerning the position of lysine and glutamine residues involved in the reaction. The results revealed lysine K176 and glutamine Q175 of β-casein as the most reactive residues, which might be located in a highly flexible region of the molecule based on different possible reaction partners identified in this study. Except for the isopeptide αs1 K34–αs2 Q101 in sodium caseinate (SC), all reactive sites were detected in micellar and in non-micellar casein, indicating that the initial phase of enzymatic cross-linking is not affected by micellar aggregation of caseins. Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3