Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,General Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11771-021-4848-x.pdf
Reference34 articles.
1. RAMEZANI S, MOINI A, RIAHI M, MARQUEZ A C. A model to determining the remaining useful life of rotating equipment, based on a new approach to determining state of degradation[J]. Journal of Central South University, 2020, 27(8): 2291–2310. DOI: https://doi.org/10.1007/s11771-020-4450-7.
2. ZHAO Chun-hui, HUANG Biao. A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis [J]. AIChE Journal, 2018, 64(5): 1662–1681. DOI: https://doi.org/10.1002/aic.16048.
3. CHAI Zheng, ZHAO Chun-hui. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification [J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54–66. DOI: https://doi.org/10.1109/TII.2019.2915559.
4. DAI Yi, CHENG Shu, GAN Qin-jie, YU Tian-jian, WU Xun, BI Fu-liang. Life prediction of Ni-Cd battery based on linear Wiener process [J]. Journal of Central South University, 2021, 28(9): 2919–2930. DOI: https://doi.org/10.1007/s11771-021-4816-5.
5. ZHAO Chun-hui, GAO Fu-rong. Online fault prognosis with relative deviation analysis and vector autoregressive modeling [J]. Chemical Engineering Science, 2015, 138: 531–543. DOI: https://doi.org/10.1016/j.ces.2015.08.037.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Overview and prospect of abnormal monitoring methods for non-stationary processes;SCIENTIA SINICA Informationis;2024-08-01
2. Remaining useful life prediction method of rolling bearings based on improved 3σ and DBO-HKELM;Measurement Science and Technology;2024-07-03
3. A Heterogeneous Transfer Learning Method for Fault Prediction of Railway Track Circuit;2024
4. A different method of fault feature extraction under noise disturbance and degradation trend estimation with system resilience for rolling bearings;PLOS ONE;2023-07-06
5. A Novel Sensor-Based Label-Smoothing Technique for Machine State Degradation;IEEE Sensors Journal;2023-05-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3