Remaining useful life prediction method of rolling bearings based on improved 3σ and DBO-HKELM

Author:

Gao Shuzhi,Li Zeqin,Zhang YiminORCID,Zhang Sixuan,Zhou JinORCID

Abstract

Abstract An improved 3σ method and dung beetle algorithm optimization hybrid kernel extreme learning machine-based (DBO-HKELM) approach for predicting the remaining useful life (RUL) of rolling bearings was suggested in order to increase prediction accuracy. Firstly, multi-dimensional degradation feature data is extracted from bearing vibration data. Considering the influence of noise signal on the prediction accuracy, an improved kernel principal component analysis method is proposed to reduce the noise of degraded features. Then, an improved 3σ method is proposed to determine the starting point of bearing degradation by combining bearing vibration signal data. Lastly, a DBO-HKELM life prediction model was put forth. The parameters of hybrid kernel extreme learning machine were optimized by dung beetle algorithm, and appropriate kernel parameters and regularization coefficient were selected. The feature set of degradation indicators is input into the trained model to output the bearing RUL prediction results starting from the determined degradation starting point. Multiple data sets were used to verify that the new RUL prediction method significantly improves the prediction accuracy.

Funder

Key (General) project of Liaoning Provincial Department of Education

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3