Peculiarities in Leidenfrost water droplet evaporation

Author:

Orzechowski TadeuszORCID

Abstract

AbstractThe investigations involved a large water droplet deposited on the heating surface, the temperature of which was higher than the Leidenfrost point. The main element of the experimental setup was the heating cylinder with K-type shielded thermocouple located in its centre just below the surface. The measuring system was located on highly sensitive scales. The analysis of the droplet behaviour in time was conducted based on measured droplet mass changes over time and also photographic data recorded with high resolution digital camera. The energy balance equation is given for the assumption that evaporation from the droplet upper surface is small compared with the amount of heat dissipated from the bottom surface. The formula for the heat transfer coefficient depends on two slope values and an orthogonal projection of the drop onto the heating surface. The slopes are estimated based on the droplet diameter linear time dependence and mass versus the contact zone relationship. The solution provides a good representation of droplet evaporation under Leidenfrost conditions. The investigations, reported in the study, which concern water droplet at atmospheric pressure deposited on a hot surface with the temperature higher than the Leidenfrost point, indicate the following regularities: droplet orthogonal projection onto the heating surface changes linearly with the droplet mass, evaporation of the same amount of mass decreases linearly with an increase in the heating surface temperature, slope of the graph showing mass loss versus the heating surface temperature successively decreases.

Funder

Kielce University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3