Effect of Heating Surface Geometry on the Droplets Evaporation under Leidenfrost Conditions

Author:

Orzechowski Tadeusz1ORCID,Wciślik Sylwia1ORCID

Affiliation:

1. Kielce University of Technology, Poland

Abstract

Physical and geometric factors are generally regarded as the main cause of evaporation characteristics of the Leidenfrost droplets levitating above the hot surface. It is well-known and generally accepted that similar research is conducted under different conditions and on individual measurement set-ups. This is one of the potential reasons for the differences in the results of thermal fluxes and computational models in scientific papers. This paper discusses the influence of the heating surface geometry on the heat transfer coefficient h during water drops evaporation under film boiling regime. The variable geometry parameters are the curvature radius of the heating bowl of R = 64 and 254 mm. Individually compiled test stands made it possible to measure the instantaneous drop mass for each R radius and to determine the coefficient h. The methodology was validated by calculating the relative error. It changes with the curvature radius and the droplet size, and for droplet mass from about 2 g to 0.3 g does not exceed ±10%. The heat transfer coefficient h is about 15% higher for a drop located on a surface with a larger radius of curvature. Moreover, the method that was devised allows us to estimate the h value for asymmetric droplet shapes. The advantage of the adopted method of measuring the drop mass over time is the possibility of analyzing heat transfer processes in any drop shape range, even in the case of asymmetric ones. Previous research methods were mainly based on determining the mass of the drop by calculating its volume.

Publisher

Politechnika Koszalinska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3