Hydrodynamically enhanced electrochemical mass transfer on the surface of an electrically conductive droplet

Author:

Kharicha A.,Karimi-Sibaki E.,Vakhrushev A.,Wu M.,Ludwig A.,Bohacek J.

Abstract

AbstractA fully coupled model is proposed to investigate the influence of flow on electrochemical mass transfer at the interface between the electrolyte and an electrically conductive droplet. The electric current flows through the droplet, and consequently the droplet acts as both anode and cathode. Computations of flow, concentration of reactant, and electric current density fields were carried out. Various droplet sizes (0.5, 2, 4 mm) under different flow regimes considering Reynolds number (Re = 0.2, 2, 20, 40 and 80) were investigated. An iterative numerical method is proposed to determine the concentration of reactant and electric current density at droplet-electrolyte interface considering the reaction kinetics (Butler-Volmer) formula and the diffusion-advection of the reactant through the hydrodynamic boundary layer around the droplet. With the increase of Reynolds number, the amount of electric current density which flows through the droplet increases. It is found that the mass transfer at droplet-electrolyte interface is controlled by reaction kinetics for the small droplet (0.5 mm). However, the diffusion of the reactant governs the efficiency of mass transfer with the increase of the droplet size (2 and 4 mm). With the increase of Reynolds number, the anodic area on the surface of droplet is enlarged.

Funder

Christian Doppler Forschungsgesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3