Ionic Mass Transfer at Point Electrodes Located at Cathode Support Plate in an Electrorefining Cell in Presence of Rectangular Turbulent Promoters

Author:

Subbaiah Tondepu,Vijetha Ponnam,Marandi Barsha,Sanjay KaliORCID,Minakshi ManickamORCID

Abstract

Current density plays a major role in deciding the plant size, current efficiency, and energy consumption in electrorefining cells. In general, operating current density will be 40% of the limiting current density. Forced circulation of the electrolyte in the presence of promoters improves the mass transfer coefficient. In the present study, rectangular turbulence promoters are fitted at the bottom side of the cell to improve the mass transfer coefficient at the cathode support plate. The limiting current density technique is used to measure the mass transfer coefficient. The variables covered in the present study are the effects of flow rate, promoter height, and spacing among the promoters. The electrolyte consists of copper sulfate and sulphuric acid. At a regulated flow rate, the electrolyte is pumped from the recirculation tank to the cell through an intermediate overhead tank. The limiting current density increased with an increasing flow rate in the presence of promoters, and thus the overall mass transfer coefficient on the cathode support plate also improved. With an increase in the flow rate of the electrolyte from 6.67 × 10−6 to 153.33 m3/s, limiting current density increased from 356.8 to 488.8 A/m2 for spacing of 0.30 m, with a promoter height of 0.01 m. However, it is noteworthy that when the promoter height is increased from 0.01 to 0.07 m, the overall mass transfer coefficient is found to increase up to 60%, but with the further increase in the promoter height to 0.30 m the mass transfer coefficient starts to decrease. Therefore, the optimized cell parameters are established in this work. The current sustainable concept of employing rectangular turbulence promoters will bring benefits to any precious metal refining or electrowinning tank house electrolytes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3