A Characterization of Van Hiele’s Level 5 of Geometric Reasoning Using the Delphi Methodology

Author:

Arnal-Bailera Alberto,Manero VíctorORCID

Abstract

AbstractThe Van Hiele model of geometric reasoning establishes five levels of development, from level 1 (visual) to level 5 (rigor). Despite the fact that this model has been deeply studied, there are few research works concerning the fifth level. However, there are some works that point out the interest of working with activities at this level to promote the acquisition of previous levels. Our goal is to describe this level through the construction and validation of a list of indicators for each of the processes involved in geometrical reasoning (definition, proof, classification, and identification). Due to the lack of previous research, we have decided to use the Delphi methodology. This approach allowed us to collect information from a panel of experts to reach a consensus through a series of phases about the indicators that describe each of the processes. The final product of the iterative application of this method is a list of validated indicators of the fifth Van Hiele level of reasoning. In particular, proof and definition processes have turned out to be the most relevant processes at this level.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Education

Reference56 articles.

1. Abdullah, A. H., & Zakaria, E. (2013). The effects of Van Hiele’s phases of learning geometry on students’ degree of acquisition of Van Hiele levels. Procedia-Social and Behavioral Sciences, 102, 251–266. https://doi.org/10.1016/j.sbspro.2013.10.740

2. Alake-Tuenter, E., Biemans, H., Tobi, H., & Mulder, M. (2013). Inquiry-based science teaching competence of primary school teachers: A Delphi study. Teaching and Teacher Education, 35, 13–24. https://doi.org/10.1016/j.tate.2013.04.013

3. Andranovich, G. (1995). Developing community participation and consensus: The Delphi technique. California State University.

4. Arnal-Bailera, A. & Manero, V. (2021). La demostración en matemáticas. Perfiles de profesores en formación según sus niveles de Van Hiele [Proof in mathematics. Profiles of preservice teachers according to their Van Hiele levels]. In P. D. Diago, D. F. Yáñez, M. T. González-Astudillo, & D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (pp. 149–156). SEIEM.

5. Blair, S. (2004). Describing undergraduates’ reasoning within and across Euclidean, taxicab and spherical geometries [Ph.D. thesis]. Portland State University.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3