Introducing Statistical Inference: Design of a Theoretically and Empirically Based Learning Trajectory

Author:

van Dijke-Droogers Marianne,Drijvers Paul,Bakker Arthur

Abstract

AbstractThis paper comprises the results of a design study that aims at developing a theoretically and empirically based learning trajectory on statistical inference for 9th-grade students. Based on theories of informal statistical inference, an 8-step learning trajectory was designed. The trajectory consisted of two similar four step sequences: (1) experimenting with a physical black box, (2) visualizing distributions, (3) examining sampling distributions using simulation software, and (4) interpreting sampling distributions to make inferences in real -life contexts. Sequence I included only categorical data and Sequence II regarded numerical data. The learning trajectory was implemented in an intervention among 267 students. To examine the effects of the trajectory on students’ understanding of statistical inference, we analyzed their posttest results after the intervention. To investigate how the stepwise trajectory fostered the learning process, students’ worksheets during each learning step were analyzed. The posttest results showed that students who followed the learning trajectory scored significantly higher on statistical inference and on concepts related to each step than students of a comparison group (n = 217) who followed the regular curriculum. Worksheet analysis demonstrated that the 8-step trajectory was beneficial to students’ learning processes. We conclude that ideas of repeated sampling with a black box and statistical modeling seem fruitful for introducing statistical inference. Both ideas invite more advanced follow-up activities, such as hypothesis testing and comparing groups. This suggests that statistics curricula with a descriptive focus can be transformed to a more inferential focus, to anticipate on subsequent steps in students’ statistics education.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Education

Reference34 articles.

1. Bakker, A. (2004). Design research in statistics education. Utrecht University.

2. Batanero, C., Godino, J. D., Vallecillos, A., Green, D. R., & Holmes, P. (1994). Errors and difficulties in understanding elementary statistical concepts. International Journal of Mathematics Education in Science and Technology, 25(4), 527–547.

3. Biehler, R., & Ben-ZviMaker, D. K. (2013). Technology for enhancing statistical reasoning at the school level. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 643–690). Springer.

4. Castro Sotos, A. E., Vanhoof, S., van Den Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 1(2), 90–112.

5. Chance, B., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 295–323). Kluwer Academic Publishers.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3