The Boundary Between Finite and Infinite States Through the Concept of Limits of Sequences

Author:

Barahmand Ali

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Education

Reference20 articles.

1. Cornu, B. (1991). Limits. Advanced mathematical thinking. Dordrecht, The Netherlands: Kluwer Academic.

2. Dubinsky, E., Weller, K., McDonald, A. & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 2. Educational Studies in Mathematics, 60, 253–266.

3. Edwards, B. (1997). An undergraduate student’s understanding and use of mathematical definitions in real analysis. In J. Dossey, J. Swafford, M. Parmantie & A. Dossey (Eds.), Proceedings of the nineteenth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education(Vol. 1, pp. 17–22). Columbus, OH.

4. Fischbein, E., Tirosh, D. & Melamed, U. (1981). Is it possible to measure the intuitive acceptance of a mathematical statement? Educational Studies in Mathematics, 12, 491–512.

5. Gimenez, J. (1990). About intuitional knowledge of density in elementary school. Process PME, 14(3), 19–26.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closure property and cognitive biases;International Journal of Mathematical Education in Science and Technology;2024-08-27

2. A symbolizing activity for constructing personal expressions and its impact on a student’s understanding of the sequence of partial sums;The Journal of Mathematical Behavior;2024-03

3. The relationship between notions of infinity and strategies used to compare enumerable infinite sets;International Journal of Mathematical Education in Science and Technology;2021-06-29

4. Construction of the concept of pairability in comparing infinite sets in the individuals’ mind: an APOS approach;Teaching Mathematics and its Applications: An International Journal of the IMA;2020-08-13

5. Exploring students’ consistency in their notions: the case of comparing infinite series;International Journal of Mathematical Education in Science and Technology;2020-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3