Composite midazolam and 1′-OH midazolam population pharmacokinetic model for constitutive, inhibited and induced CYP3A activity

Author:

Wiebe Sabrina T.ORCID,Meid Andreas D.,Mikus GerdORCID

Abstract

Abstract CYP3A plays an important role in drug metabolism and, thus, can be a considerable liability for drug-drug interactions. Population pharmacokinetics may be an efficient tool for detecting such drug-drug interactions. Multiple models have been developed for midazolam, the typical probe substrate for CYP3A activity, but no population pharmacokinetic models have been developed for use with inhibition or induction. The objective of the current analysis was to develop a composite parent-metabolite model for midazolam which could adequately describe CYP3A drug-drug interactions. As an exploratory objective, parameters were assessed for potential cut-points which may allow for determination of drug-drug interactions when a baseline profile is not available. The final interaction model adequately described midazolam and 1′-OH midazolam concentrations for constitutive, inhibited, and induced CYP3A activity. The model showed good internal and external validity, both with full profiles and limited sampling (2, 2.5, 3, and 4 h), and the model predicted parameters were congruent with values found in clinical studies. Assessment of potential cut-points for model predicted parameters to assess drug-drug interaction liability with a single profile suggested that midazolam clearance may reasonably be used to detect inhibition (4.82–16.4 L/h), induction (41.8–88.9 L/h), and no modulation (16.4–41.8 L/h), with sensitivities for potent inhibition and induction of 87.9% and 83.3%, respectively, and a specificity of 98.2% for no modulation. Thus, the current model and cut-points could provide efficient and accurate tools for drug-drug liability detection, both during drug development and in the clinic, following prospective validation in healthy volunteers and patient populations.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3