Generation and application of avatars in pharmacometric modelling

Author:

Chasseloup Estelle,Hooker Andrew C.,Karlsson Mats O.

Abstract

AbstractSimulations from population models have critical applications in drug discovery and development. Avatars or digital twins, defined as individual simulations matching clinical criteria of interest compared to observations from a real subject within a predefined margin of accuracy, may be a better option for simulations performed to inform future drug development stages in cases where an adequate model is not achievable. The aim of this work was to (1) investigate methods for generating avatars with pharmacometric models, and (2) explore the properties of the generated avatars to assess the impact of the different selection settings on the number of avatars per subject, their closeness to the individual observations, and the properties of the selected samples subset from the theoretical model parameters probability density function. Avatars were generated using different combinations of nature and number of clinical criteria, accuracy of agreement, and/or number of simulations for two examples models previously published (hemato-toxicity and integrated glucose-insulin model). The avatar distribution could be used to assess the appropriateness of the models assumed parameter distribution. Similarly it could be used to assess the models ability to properly describe the trajectories of the observations. Avatars can give nuanced information regarding the ability of a model to simulate data similar to the observations both at the population and at the individual level. Further potential applications for avatars may be as a diagnostic tool, an alternative to simulations with insurance to replicate key clinical features, and as an individual measure of model fit.

Funder

Institut de Recherches Servier

Uppsala University

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

Reference26 articles.

1. Shafto M, Conroy M, Doyle R, Glaessgen E, Kemp C, LeMoigne J, Wang L (2012) Modeling, simulation, information technology & processing roadmap. Natl Aeronaut Space Adm 32:1–38

2. Patterson EA, Taylor RJ, Bankhead M (2016) A framework for an integrated nuclear digital environment. Prog Nucl Energy 87:97–103

3. Parott A, Warshaw L (2017) Industry 4.0 and the digital twin: manufacturing meets its match. Accessed 23 Jan 2019

4. Stark R, Damerau T (2019) Digital twin. CIRP encyclopedia of production engineering. Springer, New York

5. Polasek TM, Rostami-Hodjegan A (2020) Virtual twins: understanding the data required for model-informed precision dosing. Clin Pharmacol Ther 107(4):742–745

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3