Assessment of mechanical performance of Al2O3 ceramic honeycomb sandwich structures produced with SLA 3D-printing regarding unpolymerized slurry removal strategy

Author:

Kafkaslıoğlu Yıldız BetülORCID

Abstract

AbstractAl2O3 ceramic honeycomb sandwich bars with a hexagonal core were manufactured through SLA 3D-printing to analyze the impact of hole placement, designed for the removal of uncured slurry, on the bending strength of the samples. Several holes were placed specifically on the samples in the design in two different ways. In the initial design, the holes were placed on the honeycomb sandwich structure’s upper and lower face-sheets. In the second design, the holes were positioned in the direction of the sample thickness, in the lateral walls. The moment of inertia values for the honeycomb structures were calculated with the help of experimental elastic modulus results, and true bending strength was determined according to these results. Nominal strength values were found using the common three-point bending formula. The true bending strength value of Al2O3 with lateral holes was 73% higher than Al2O3 with holes on face-sheets, while the nominal bending strength was 79% higher. Al2O3 samples with holes on face-sheets exhibited a significantly higher failure index compared with both the bulk samples and the Al2O3 samples with lateral holes. The holes on the face-sheets reduced the cross-sectional area of the tensile surface and contributed to an increase in stresses due to the stress concentration effect. The Al2O3 samples with lateral holes provided a great advantage of specific strength, reaching an average value of 65% above the specific strength of the bulk samples.

Funder

Sivas University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3