Heuristic Methods for Minimum-Cost Pipeline Network Design – a Node Valency Transfer Metaheuristic

Author:

Yeates ChristopherORCID,Schmidt-Hattenberger Cornelia,Weinzierl Wolfgang,Bruhn David

Abstract

AbstractDesigning low-cost network layouts is an essential step in planning linked infrastructure. For the case of capacitated trees, such as oil or gas pipeline networks, the cost is usually a function of both pipeline diameter (i.e. ability to carry flow or transferred capacity) and pipeline length. Even for the case of incompressible, steady flow, minimizing cost becomes particularly difficult as network topology itself dictates local flow material balances, rendering the optimization space non-linear. The combinatorial nature of potential trees requires the use of graph optimization heuristics to achieve good solutions in reasonable time. In this work we perform a comparison of known literature network optimization heuristics and metaheuristics for finding minimum-cost capacitated trees without Steiner nodes, and propose novel algorithms, including a metaheuristic based on transferring edges of high valency nodes. Our metaheuristic achieves performance above similar algorithms studied, especially for larger graphs, usually producing a significantly higher proportion of optimal solutions, while remaining in line with time-complexity of algorithms found in the literature. Data points for graph node positions and capacities are first randomly generated, and secondly obtained from the German emissions trading CO2 source registry. As political will for applications and storage for hard-to-abate industry CO2 emissions is growing, efficient network design methods become relevant for new large-scale CO2 pipeline networks.

Funder

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3