Uncertainties of Sub-Scaled Supply and Demand in Agent-Based Mobility Simulations with Queuing Traffic Model

Author:

Saprykin AleksandrORCID,Chokani Ndaona,Abhari Reza S.

Abstract

AbstractAgent-based models for dynamic traffic assignment simulate the behaviour of individual, or group of, agents, and then the simulation outcomes are observed on the scale of the system. As large-scale simulations require substantial computational power and have long run times, most often a sample of the full population and downscaled road capacities are used as simulation inputs, and then the simulation outcomes are scaled up. Using a massively parallelized mobility model on a large-scale test case of the whole of Switzerland, which includes 3.5 million private vehicles and 1.7 million users of public transit, we have systematically quantified, from 6 105 simulations of a weekday, the impacts of scaled input data on simulation outputs. We show, from simulations with population samples ranging from 1% to 100% of the full population and corresponding scaling of the traffic network, that the simulated traffic dynamics are driven primarily by the flow capacity, rather than the spatial properties, of the traffic network. Using a new measure of traffic similarity, that is based on the chi-squared test statistic, it is shown that the dynamics of the vehicular traffic and the occupancy of the public transit are adversely impacted when population samples less than 30% of the full population are used. Moreover, we present evidence that the adverse impact of population sampling is determined mostly by the patterns of the agents’ behaviour rather than by the traffic model.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3