Abstract
AbstractThe interaction of a PEGylated and non-PEGylated Fe3O4 nanoparticle drug-delivery system, with 5-fluorouracil (5-FU) as the chemotherapy drug, is investigated via atomistic molecular dynamics (MD). The induced pore formation in a dipalmitoylphosphatidylcholine (DPPC) bilayer phospholipid (BLPL) is studied, and the resulting hourglass-shaped pores with hydrophilic lipid headgroups lining the pores are observed. Furthermore, we optimize the required number of ligands that are required to allow for the formed pores to spontaneously reseal. Additionally, the number of water molecules that transverse through the water bridge is investigated. These results may be useful to design nanocarrier systems that will maintain the cellular osmotic pressure and stability, while the 5-FU is converted to the required metabolites inside the cell to serve its purpose as a chemotherapeutic drug.
Funder
DSI-NRF
University of the Free State
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献