Implanted Passive Engineering Mechanism Improves Hand Function after Tendon Transfer Surgery: A Cadaver-Based Study

Author:

Mardula Katherine L.1,Balasubramanian Ravi1,Allan Christopher H.2

Affiliation:

1. School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR, USA

2. School of Medicine, University of Washington, 4245 Roosevelt Way NE, Seattle, WA, USA

Abstract

Purpose The purpose of this study was to investigate if a new tendon transfer surgical procedure that uses an implanted passive engineering mechanism for attaching multiple tendons to a single donor muscle in place of directly suturing the tendons to the muscle improves hand function in physical interaction tasks such as grasping. Methods The tendon transfer surgery for high median ulnar palsy was used as an exemplar, where all four flexor digitorum profundus (FDP) tendons are directly sutured to the extensor carpi radialis longus (ECRL) muscle to restore flexion. The new procedure used a passive hierarchical artificial pulley system to connect the muscle to the tendons. Both the suture-based and pulley-based procedures were conducted on N=6 cadaver hands. The fingers' ability to close around four objects when the ECRL tendon was pulled was tested. Post-surgery hand function was evaluated based on the actuation force required to create a grasp and the slip between the fingers and the object after the grasp was created. Results When compared with the suture-based procedure, the pulley-based procedure (i) reduced the actuation force required to close all four fingers around the object by 45 % and (ii) improved the fingers' individual adaptation to the object's shape during the grasping process and reduced slip by 52 % after object contact (2.99°±0.28° versus 6.22°±0.66°). Conclusions The cadaver study showed that the implanted engineering mechanism for attaching multiple tendons to one muscle significantly improved hand function in grasping tasks when compared with the current procedure.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3