Parareal with a learned coarse model for robotic manipulation

Author:

Agboh WisdomORCID,Grainger Oliver,Ruprecht DanielORCID,Dogar MehmetORCID

Abstract

AbstractA key component of many robotics model-based planning and control algorithms is physics predictions, that is, forecasting a sequence of states given an initial state and a sequence of controls. This process is slow and a major computational bottleneck for robotics planning algorithms. Parallel-in-time integration methods can help to leverage parallel computing to accelerate physics predictions and thus planning. The Parareal algorithm iterates between a coarse serial integrator and a fine parallel integrator. A key challenge is to devise a coarse model that is computationally cheap but accurate enough for Parareal to converge quickly. Here, we investigate the use of a deep neural network physics model as a coarse model for Parareal in the context of robotic manipulation. In simulated experiments using the physics engine Mujoco as fine propagator we show that the learned coarse model leads to faster Parareal convergence than a coarse physics-based model. We further show that the learned coarse model allows to apply Parareal to scenarios with multiple objects, where the physics-based coarse model is not applicable. Finally, we conduct experiments on a real robot and show that Parareal predictions are close to real-world physics predictions for robotic pushing of multiple objects. Code (https://doi.org/10.5281/zenodo.3779085) and videos (https://youtu.be/wCh2o1rf-gA) are publicly available.

Funder

University of Leeds

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Vision and Pattern Recognition,General Engineering,Modelling and Simulation,Software,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-object Grasping in the Plane;Springer Proceedings in Advanced Robotics;2023

2. Parareal with a Physics-Informed Neural Network as Coarse Propagator;Euro-Par 2023: Parallel Processing;2023

3. Parallel-in-time simulation of biofluids;Journal of Computational Physics;2022-09

4. GRiD: GPU-Accelerated Rigid Body Dynamics with Analytical Gradients;2022 International Conference on Robotics and Automation (ICRA);2022-05-23

5. Occlusion-Aware Search for Object Retrieval in Clutter;2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3