Transglycosylation of Stevioside by a Commercial β-Glucanase with Fungal Extracted β-Glucans as Donors

Author:

Zerva Anastasia,Mohammadi Milad,Dimopoulos Georgios,Taoukis Petros,Topakas EvangelosORCID

Abstract

Abstract Alternative sweeteners, such as steviol glucosides from the plant Stevia rebaudiana Bertoni, are becoming increasingly popular for the design of next-generation foodstuffs. However, the bitter aftertaste of native steviol glucosides is one of the main reasons behind consumer reluctance towards stevia-containing products. Biocatalysis could be a sustainable solution to this problem, through addition of glucosyl moieties to the molecule. Glycoside hydrolases are enzymes performing transglycosylation reactions, and they can be exploited for such modifications. In the present work, the commercial β-glucanase Finizym 250L® was employed for the transglycosylation of stevioside. After optimization of several reaction parameters, the maximal reaction yield obtained was 19%, with barley β-glucan as the glycosyl donor. With the aim to develop a sustainable process, β-glucan extracts from different fungal sources were prepared. Pulsed Electric Field pretreatment of mycelial biomass resulted in extracts with higher β-glucan content. The extracts were tested as alternative glucosyl donors, reaching up to 15.5% conversion yield, from Pleurotus-extracted β-glucan. Overall, in the present work a novel enzymatic process for the modification of stevioside is proposed, with concomitant valorization of β-glucans extracted from fungal biomass, potentially generated as a byproduct from other applications, in concert with the principles of circular economy. Graphical Abstract

Funder

European Union and Greek national funds

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3