Characterization of Bacterial and Archaeal Communities by DGGE and Next Generation Sequencing (NGS) of Nitrification Bioreactors Using Two Different Intermediate Landfill Leachates as Ammonium Substrate

Author:

González-Cortés J. J.ORCID,Valle A.ORCID,Ramírez M.ORCID,Cantero D.ORCID

Abstract

AbstractNitrification–denitrification is an environmentally friendly and cost-effective way to treat landfill leachates. Special attention has been given to the nitrification step, usually the limiting one due to its special sensitivity to environmental factors. Here, the effect of the acclimatization of the nitrifying biomass to two different intermediate landfill leachates with different salt concentrations, COD and BOD5 has been studied. Despite the complete nitrification being successfully performed, the specific nitritation rates were reduced after the biomass adaptation to both landfill leachates caused by the presence of heavy metals and the high salt concentration. NGS analysis of the biomass samples revealed that Proteobacteria (48.5%), Actinobacteriota (14.4%) and Chloroflexi (9.5%) were the dominant phyla in the non-adapted biomass. The leachate feeding led to a decrease in OTU diversity and favored the growth of the phyla Bacteroidetes (27.2%), Euryarchaeota (26.6%) and Proteobacteria (20.0%) accounting for more than 70% of relative abundance. Several OTUs capable of performing the nitritation belong to the Xanthobacteraceae and the Xanthomonadaceae families, the Saccharimonadales order, and the genus Nitrosomonas, Nitrosospira and Paracoccus. In the nitratation process, the Xanthobacteraceae family and Lautropia and Nitrolancea genera were found. Graphical Abstract

Funder

Ministerio de Economía y Competitividad

Universidad de Cádiz

Universidad de Cadiz

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3