Abstract
AbstractWe consider Walsh’s conformal map from the exterior of a compact set $$E \subseteq \mathbb {C}$$
E
⊆
C
onto a lemniscatic domain. If E is simply connected, the lemniscatic domain is the exterior of a circle, while if E has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of E and by the exponents and centers of the generalized lemniscate. For general E, we characterize the exponents in terms of the Green’s function of $$E^c$$
E
c
. Under additional symmetry conditions on E, we also locate the centers of the lemniscatic domain. For polynomial pre-images $$E = P^{-1}(\Omega )$$
E
=
P
-
1
(
Ω
)
of a simply-connected infinite compact set $$\Omega $$
Ω
, we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Analysis
Reference16 articles.
1. Ahlfors, L.V.: Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable, 3rd edn. McGraw-Hill, New York-Toronto-London (1979)
2. Grunsky, H.: Über konforme Abbildungen, die gewisse Gebietsfunktionen in elementare Funktionen transformieren. I. Math. Z. 67, 129–132 (1957)
3. Grunsky, H.: Über konforme Abbildungen, die gewisse Gebietsfunktionen in elementare Funktionen transformieren. II. Math. Z. 67, 223–228 (1957)
4. Grunsky, H.: Lectures on theory of functions in multiply connected domains. Vandenhoeck & Ruprecht, Göttingen, 1978. Studia Mathematica, Skript 4
5. Jenkins, J.A.: On a canonical conformal mapping of J. L. Walsh. Trans. Amer. Math. Soc. 88, 207–213 (1958)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献