Abstract
AbstractIn this paper we consider a finite-dimensional vector space $${\mathcal {P}}$$
P
over the Galois field $${\text {GF}}(2),$$
GF
(
2
)
,
and the family $${\mathcal {B}}_k$$
B
k
(respectively, $${\mathcal {B}}_k^*$$
B
k
∗
) of all the k-sets of elements of $$\mathcal {P}$$
P
(respectively, of $${\mathcal {P}}^*= {\mathcal {P}} \setminus \{0\}$$
P
∗
=
P
\
{
0
}
) summing up to zero. We compute the parameters of the 3-design $$({\mathcal {P}},{\mathcal {B}}_k)$$
(
P
,
B
k
)
for any (necessarily even) k, and of the 2-design $$({\mathcal {P}}^{*},{\mathcal {B}}_k^{*})$$
(
P
∗
,
B
k
∗
)
for any k. Also, we find a new proof for the weight distribution of the binary Hamming code. Moreover, we find the automorphism groups of the above designs by characterizing the permutations of $${\mathcal {P}}$$
P
, respectively of $${\mathcal {P}}^*$$
P
∗
, that induce permutations of $${\mathcal {B}}_k$$
B
k
, respectively of $${\mathcal {B}}_k^*.$$
B
k
∗
.
In particular, this allows one to relax the definitions of the permutation automorphism groups of the binary Hamming code and of the extended binary Hamming code as the groups of permutations that preserve just the codewords of a given Hamming weight.
Funder
Università degli Studi di Palermo
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference29 articles.
1. Assmus E.F., Jr.: On 2-ranks of Steiner triple systems. Electron. J. Combin. 2, article n. R9 (1995).
2. Avgustinovich S.V., Vasil’eva A.Y.: Reconstruction theorems for centered functions and perfect codes. Sib. Math. J. 49(3), 383–388 (2008).
3. Bassalygo L.A., Zinov’ev V.A.: A note on uniformly-packed codes (in Russian). Probl. Peredachi Inform. 13(3), 22–25 (1977).
4. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).
5. Braun M., Etzion T., Östergård P.R.J., Vardy A., Wassermann A.: On the existence of $$q$$-analogs of Steiner systems. Forum Math. Pi 4(e 7) (2016).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献