Growth of the perfect sequence covering array number

Author:

Iurlano EnricoORCID

Abstract

AbstractIn this note we answer positively an open question posed by Yuster in 2020 [14] on the polynomial boundedness of the perfect sequence covering array number$$g(n,k)$$ g ( n , k ) (PSCA number). The latter determines the (renormalized) minimum row-count that perfect sequence covering arrays (PSCAs) can possess. PSCAs are matrices with permutations in $$S_n$$ S n as rows, such that each ordered k-sequence of distinct elements of $$[n]$$ [ n ] is covered by the same number of rows. We obtain the result after illuminating an isomorphism between this structure from design theory and a special case of min-wise independent permutations. Afterwards, we point out that asymptotic bounds and constructions can be transferred between these two structures. Moreover, we sharpen asymptotic lower bounds for g(nk) and improve upper bounds for g(n, 4) and g(n, 3), for some concrete values of n. We conclude with some open questions and propose a new matrix class being potentially advantageous for searching PSCAs.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Reference14 articles.

1. Bargachev V.: An improved lower bound on the size of $$k$$-rankwise independent families of permutations. Preprint on website of St. Petersburg Department of Steklov Institute of Mathematics. https://www.pdmi.ras.ru/preprint/2004/04-13.html (2004).

2. Brain M., Erdem E., Inoue K., Oetsch J., Pührer J., Tompits H., Yilmaz C.: Event-sequence testing using answer-set programming. Int. J. Adv. Softw. 5(3 &4) (2012).

3. Broder A.Z., Charikar M., Frieze A.M., Mitzenmacher M.: Min-wise independent permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000).

4. Chee Y.M., Colbourn C.J., Horsley D., Zhou J.: Sequence covering arrays. SIAM J. Discret. Math. 27(4), 1844–1861 (2013).

5. Gentle A.R., Wanless I.M.: On perfect sequence covering arrays. Ann. Combinat. (2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3