Abstract
AbstractA PSCA$$(v, t, \lambda )$$
(
v
,
t
,
λ
)
is a multiset of permutations of the v-element alphabet $$\{0, \dots , v-1\}$$
{
0
,
⋯
,
v
-
1
}
, such that every sequence of t distinct elements of the alphabet appears in the specified order in exactly $$\lambda $$
λ
of the permutations. For $$v \geqslant t \geqslant 2$$
v
⩾
t
⩾
2
, we define g(v, t) to be the smallest positive integer $$\lambda $$
λ
, such that a PSCA$$(v, t, \lambda )$$
(
v
,
t
,
λ
)
exists. We show that $$g(6, 3) = g(7, 3) = g(7, 4) = 2$$
g
(
6
,
3
)
=
g
(
7
,
3
)
=
g
(
7
,
4
)
=
2
and $$g(8, 3) = 3$$
g
(
8
,
3
)
=
3
. Using suitable permutation representations of groups, we make improvements to the upper bounds on g(v, t) for many values of $$v \leqslant 32$$
v
⩽
32
and $$3\leqslant t\leqslant 6$$
3
⩽
t
⩽
6
. We also prove a number of restrictions on the distribution of symbols among the columns of a PSCA.
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics
Reference10 articles.
1. Y. M. Chee, C. J. Colbourn, D. Horsley and J. Zhou, Sequence covering arrays, SIAM J. Disc. Math., 27 (2013), 1844–1861.
2. The GAP Group, GAP – groups, algorithms, and programming. v.4.11.0. gap-system.org.
3. A. Klein, On perfect deletion-correcting codes, J. Combin. Des., 12 (2004), 72–77.
4. G. Kuperberg, S. Lovett and R. Peled, Probabilistic existence of regular combinatorial structures, Geom. Funct. Anal., 27 (2017), 919–972.
5. V. Levenshtein, Perfect codes in the metric of deletions and insertions, Diskret. Mat., 3 (1991), 3–20.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献