Author:
Evans Anthony B.,Fear David,Stones Rebecca J.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference17 articles.
1. Asplund J., Keranen M.S.: Mutually orthogonal equitable latin rectangles. Discret. Math. 311, 1015–1033 (2011).
2. Bose R.C.: On the application of the properties of Galois fields to the construction of hyper-Graeco-Latin squares. Sankhyā 3, 323–338 (1938).
3. Bryant D., Buchanan M., Wanless I.M.: The spectrum for quasigroups with cyclic automorphisms and additional symmetries. Discret. Math. 304, 821–833 (2009).
4. Bryant D., Egan J., Maenhaut B., Wanless I.M.: Indivisible plexes in Latin squares. Des. Codes Cryptogr. 52, 93–105 (2009).
5. Bryant D., Maenhaut B.M., Wanless I.M.: New families of atomic Latin squares and perfect $$1$$ 1 -factorisations. J. Comb. Theory Ser. A 113, 608–624 (2004).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Balanced Equi-$n$-Squares;The Electronic Journal of Combinatorics;2020-10-16
2. K-Plex 2-Erasure Codes and Blackburn Partial Latin Squares;IEEE Transactions on Information Theory;2020-06