Balanced Equi-$n$-Squares

Author:

Akbari Saieed,Marbach Trent G.,Stones Rebecca J.,Wu Zhuanhao

Abstract

We define a $d$-balanced equi-$n$-square $L=(l_{ij})$, for some divisor $d$ of $n$, as an $n \times n$ matrix containing symbols from $\mathbb{Z}_n$ in which any symbol that occurs in a row or column, occurs exactly $d$ times in that row or column. We show how to construct a $d$-balanced equi-$n$-square from a partition of a Latin square of order $n$ into $d \times (n/d)$ subrectangles. In graph theory, $L$ is equivalent to a decomposition of $K_{n,n}$ into $d$-regular spanning subgraphs of $K_{n/d,n/d}$. We also study when $L$ is diagonally cyclic, defined as when $l_{(i+1)(j+1)}=l_{ij}+1$ for all $i,j \in \mathbb{Z}_n$, which correspond to cyclic such decompositions of $K_{n,n}$ (and thus $\alpha$-labellings). We identify necessary conditions for the existence of (a) $d$-balanced equi-$n$-squares, (b) diagonally cyclic $d$-balanced equi-$n$-squares, and (c) Latin squares of order $n$ which partition into $d \times (n/d)$ subrectangles. We prove the necessary conditions are sufficient for arbitrary fixed $d \geq 1$ when $n$ is sufficiently large, and we resolve the existence problem completely when $d \in \{1,2,3\}$. Along the way, we identify a bijection between $\alpha$-labellings of $d$-regular bipartite graphs and what we call $d$-starters: matrices with exactly one filled cell in each top-left-to-bottom-right unbroken diagonal, and either $d$ or $0$ filled cells in each row and column. We use $d$-starters to construct diagonally cyclic $d$-balanced equi-$n$-squares, but this also gives new constructions of $\alpha$-labellings.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3