Machine learning methods for service placement: a systematic review

Author:

Keshavarz Haddadha ParvizORCID,Rezvani Mohammad HosseinORCID,MollaMotalebi MahdiORCID,Shankar Achyut

Abstract

AbstractWith the growth of real-time and latency-sensitive applications in the Internet of Everything (IoE), service placement cannot rely on cloud computing alone. In response to this need, several computing paradigms, such as Mobile Edge Computing (MEC), Ultra-dense Edge Computing (UDEC), and Fog Computing (FC), have emerged. These paradigms aim to bring computing resources closer to the end user, reducing delay and wasted backhaul bandwidth. One of the major challenges of these new paradigms is the limitation of edge resources and the dependencies between different service parts. Some solutions, such as microservice architecture, allow different parts of an application to be processed simultaneously. However, due to the ever-increasing number of devices and incoming tasks, the problem of service placement cannot be solved today by relying on rule-based deterministic solutions. In such a dynamic and complex environment, many factors can influence the solution. Optimization and Machine Learning (ML) are two well-known tools that have been used most for service placement. Both methods typically use a cost function. Optimization is usually a way to define the difference between the predicted and actual value, while ML aims to minimize the cost function. In simpler terms, ML aims to minimize the gap between prediction and reality based on historical data. Instead of relying on explicit rules, ML uses prediction based on historical data. Due to the NP-hard nature of the service placement problem, classical optimization methods are not sufficient. Instead, metaheuristic and heuristic methods are widely used. In addition, the ever-changing big data in IoE environments requires the use of specific ML methods. In this systematic review, we present a taxonomy of ML methods for the service placement problem. Our findings show that 96% of applications use a distributed microservice architecture. Also, 51% of the studies are based on on-demand resource estimation methods and 81% are multi-objective. This article also outlines open questions and future research trends. Our literature review shows that one of the most important trends in ML is reinforcement learning, with a 56% share of research.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3