Advancements in Q‐learning meta‐heuristic optimization algorithms: A survey

Author:

Yang Yang1,Gao Yuchao1,Ding Zhe2,Wu Jinran3ORCID,Zhang Shaotong4,Han Feifei3,Qiu Xuelan3,Gao Shangce5ORCID,Wang You‐Gan6ORCID

Affiliation:

1. College of Automation & College of Artificial Intelligence Nanjing University of Posts and Telecommunications Nanjing China

2. School of Computer Science Queensland University of Technology Brisbane Queensland Australia

3. Faculty of Education and Arts Australian Catholic University Banyo Queensland Australia

4. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE, College of Marine Geosciences Ocean University of China Qingdao China

5. Faculty of Engineering University of Toyama Toyama‐shi Japan

6. School of Mathematics and Physics The University of Queensland St. Lucia Queensland Australia

Abstract

AbstractThis paper reviews the integration of Q‐learning with meta‐heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta‐heuristic integration, transfer learning strategies, and techniques to reduce state space.This article is categorized under: Technologies > Computational Intelligence Technologies > Artificial Intelligence

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference188 articles.

1. Light spectrum optimizer: A novel physics‐inspired metaheuristic optimization algorithm;Abdel‐Basset M.;Mathematics,2022

2. Flower pollination algorithm: A comprehensive review;Abdel‐Basset M.;Artificial Intelligence Review,2019

3. Knowledge tracing: A survey;Abdelrahman G.;ACM Computing Surveys,2023

4. Dwarf mongoose optimization algorithm;Agushaka J. O.;Computer Methods in Applied Mechanics and Engineering,2022

5. Info: An efficient optimization algorithm based on weighted mean of vectors;Ahmadianfar I.;Expert Systems with Applications,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3