Deep learning: survey of environmental and camera impacts on internet of things images

Author:

Kaur Roopdeep,Karmakar GourORCID,Xia Feng,Imran Muhammad

Abstract

AbstractInternet of Things (IoT) images are captivating growing attention because of their wide range of applications which requires visual analysis to drive automation. However, IoT images are predominantly captured from outdoor environments and thus are inherently impacted by the camera and environmental parameters which can adversely affect corresponding applications. Deep Learning (DL) has been widely adopted in the field of image processing and computer vision and can reduce the impact of these parameters on IoT images. Albeit, there are many DL-based techniques available in the current literature for analyzing and reducing the environmental and camera impacts on IoT images. However, to the best of our knowledge, no survey paper presents state-of-the-art DL-based approaches for this purpose. Motivated by this, for the first time, we present a Systematic Literature Review (SLR) of existing DL techniques available for analyzing and reducing environmental and camera lens impacts on IoT images. As part of this SLR, firstly, we reiterate and highlight the significance of IoT images in their respective applications. Secondly, we describe the DL techniques employed for assessing the environmental and camera lens distortion impacts on IoT images. Thirdly, we illustrate how DL can be effective in reducing the impact of environmental and camera lens distortion in IoT images. Finally, along with the critical reflection on the advantages and limitations of the techniques, we also present ways to address the research challenges of existing techniques and identify some further researches to advance the relevant research areas.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3